Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages.
نویسندگان
چکیده
The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer's clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability.
منابع مشابه
Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum.
Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to cir...
متن کاملA switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages.
Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only mature stage GIEs circulate in the pe...
متن کاملContinuous force-displacement relationships for the human red blood cell at different erythrocytic developmental stages of Plasmodium falciparum malaria parasite
Prior work involving either aspiration of infected cells into micropipette under suction pressure or deformation in laminar shear flow revealed that the malaria parasite Plasmodium (P.) falciparum could result in significant stiffening of infected human red blood cells (RBCs). In this paper, we present optical tweezers studies of progressive changes to nonlinear mechanical response of infected ...
متن کاملDeformability of Plasmodium falciparum Parasitized Red Blood Cells
The biophysical properties of the human red blood cell (RBC) permit large deformations required for passage through narrow capillaries and spleen sinusoids. Several pathologic conditions alter RBC deformability that can result in abnormal circulation behavior. In the present work, altered RBC deformability caused by invading Plasmodium falciparum parasites, which are responsible for the disease...
متن کاملPlasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission.
Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 17 شماره
صفحات -
تاریخ انتشار 2016